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Abstract

Given the benefits of coupling low-thrust propulsion with gravity assists, techniques for
easily identifying candidate trajectories would be extremely uvseful to mission designers. We
describe the computational implementation of an analytic, shape-based method for the design
of low-thrust, gravity-assist trajectories. We also augment the method by allowing coast arcs to
be patched with thrust arcs on the transfers between bodies. This approach permits not only
rapid, broad searches over the design space, but also provides initial guesses for trajectory op-
timization. Numerical examples are presented for an Earth-Mars-Ceres rendezvous trajectory
and an Farth-Venus-Earth-Mars- Jupiter flyby trajectory.

INTRODUCTION

It is well known that highly efficient, continuous-thrust propulsion and use of the gravity assist
concept each provide significant benefits in trajectory design. Furthermore, each has been demon-
strated in practice: NASA’s Deep Space I spacecraft is currently providing the first validation of
interplanetary use of solar electric propulsion, while gravity assists have been repeatedly used in the
exploration of the solar system, perhaps most notably by Voyager II launched in 1977. The coupling
of high I, low-thrust propulsion with gravity assists is a natural next step in the development, of
highly efficient trajectory design techniques for deep space missions. In the literature, the design of
such trajectories is typically treated as an optimisation problem, which can be solved by a variety
of techniques.! =11 However, all techniques need some sort of initial guess for at least part of the
solution, and even with such a guess, experience has shown that convergence to an optimal solution,
particularly in the case of multiple gravity assists, is a formidable challenge. In this paper, rather
than addressing the optimisation of particular initial guesses, we present a shape-based method?2:13
for efficiently generating such initial guesses for low-thrust, gravity-assist trajectories. These initial
guessces serve a twofold purpose: They provide mission designers with rapid, broad overviews of the
trajectory design space,!® and they provide a starting point for trajectory optimisation.

We describe in this paper the computational method of solution of the equations resulting from
the use of the exponential sinusoid shape!?13 in a shape-based approach to trajectory design.
We also discuss the incorporation of coast arcs into this model, and provide an example thereof.
We demonstrate the efficacy of the shape-based approach in dealing with any number of flybys
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with a sample trajectory from Earth to Jupiter using gravity assists at Venus, Earth and Mars.
Furthermore, trajectories identified with the shape-based method are shown to be good initial
guesses for optimisation.

In the shape-based approach, the spacecraft trajectory is assumed to be of a certain shape, with
the requisite thrust profile determined therefrom. With the correct choice of shape, not only can
we add to the small family of analytic solutions to the equations of motion (see for example Refs.
15-19), but can also obtain trajectories with satisfactory performance. In the present paper, we
assume that the thrust arcs follow the planar exponential sinusoid shape. The out-of-plane motion
required to encounter a gravity-assist body is assumed to be small and is approximated through
an analysis of the orbital angular momentum vector. In previous rescarch,' the planar motion the
spacecraft was assumed to follow an exponential sinusoid between gravity-assist bodies. Here we
add the capability of patching exponential sinusoid arcs with conic arcs, yielding thrust-coast or
coast-thrust arcs between bodies. We provide the algorithmic details of how solutions are found for
thrust, thrust-coast and coast-thrust legs. There are two key problems requiring numerical solution:
1) computation of the intersection points of two transcendental curves (namely, the trajectory arc
and the target’s orbit), and 2) subsequent solution of the targeting problem. We also incorporate
the previously existing capability for purely ballistic transfer between bodies.20

METHODOLOGY

Overview

In this section, we describe how exponential-sinusoid-based thrust arcs are incorporated into
the STOUR (Satellite Tour Design Program) software,?” to form a new program, STOUR-LTGA,
for the automated searching for low-thrust, gravity-assist trajectories. As in STOUR, for a given
sequence of gravity-assist bodies, a range of launch dates and a range of launch ve,s are automati-
cally searched for trajectories, subject to various constraints, such as time of flight and propellant
consumption constraints. In STOUR-LTGA, as in STOUR, the positions and velocities of the solar
system bodies are modelled by polynomial representations, or, if the user so requests, by more
accurate ephemeris data.

Previous papers'?13 have presented an analysis of various thrust profiles that can be used
to follow an exponential sinusoid shape. Of these, we choose the tangential thrust case, as it is
the simplest analytic case, it is less prone to singularities, and it has tolerable thrust levels and
attractive velocity profiles for both flyby missions and rendezvous missions. For convenience, in
polar coordinates (r,f) we repeat here the equations of motion, and the shape, flight path angle
(7), angular rate, and thrust equations, with the simplifications afforded by the tangential thrust
assumption:
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where the dot, ('), denotes differentiation with respect to time, u is the gravitational parameter of



the central body, F is the magnitude of the thrust acceleration, « is the thrust angle, ko, kq, ks
and ¢ are constants, a is the normalised thrust acceleration defined as

F

p/r? 5)

a=

s = sin(kaf + 4), and ¢ = cos(kqf + ¢). The thrust angle is given by
o =~+4nmT (6)

where n is chosen so that the right-hand-side of Eq. 4 1s positive.

The motion of the spacecraft between planets (i.e. on each leg) is permitted either to be purely
conic, that is, coasting, or to involve some degree of thrusting. The purely conic legs are computed
using the previously existing capabilities of STOUR. The remainder of this section describes how
legs involving thrust are computed.

In STOUR-LTGA, legs can include thrust arcs in threc ways: Either the entire leg is a thrust
arc, or a thrust arc is succeeded or preceded by a coast arc. In other words, the legs may be
described as thrust, thrust-coast, or coast-thrust. The motion on thrusting arcs is considercd
in two separate parts, the in-plane motion and the out-of-plane motion. The in-plane motion is
assumed to follow a tangential-thrust exponential sinusoid (Eq. 1). The gravity assist is modelled as
a hyperbolic-flyby-induced, instantaneous change in heliocentric spacecraft velocity without change
in heliocentric position.

The out-of-plane motion is based on an analysis of the orbital angular momentum vector,
where the out-of-plane angle and speed are approximated from the in-plane angular momentum
and velocity components. The approximations are increasingly better, the smaller the out-of-plane
angles.

In-Plane Motion
Thrust Legs

The STOUR-LTGA program steps through the launch dates and launch ves specified by the
user, and for each computes trajectories that reach the next body. The launch vy, vector is assumed
to lie in the body’s orbit plane, pointing in any direction. In the case of a flyby, a B-Plane angle?!
of 0° or 180° is assumed (the fundamental plane being taken as the flyby body’s orbit plane), and
the ve, turn angle is constrained by altitude. The low-thrust reference plane (i.e. where the planar
motion occurs) for the next leg is taken as normal to the spacecraft’s initial angular momentum
vector. The program steps through the full range of in-plane orientations for the outgoing vy,
vector. For each outgoing v, vector, there correspond a heliocentric flight path angle and speed;
meaning that tan~ and ¢ are known. Hence, the quantity

k123 = klkgs (7)

can be determined from Eq. 3. Then, together with the trigonometric identity s? + ¢? = 1 and Eq.
2, there results the constraint relationship

kikG — k2 tan®y — k2, = 0 (8)
between the as yet undetermined shape paramters ky and ks. Thus there remains one free shape
parameter, taken as k9, which is used to effect the targeting of the next body.

The search over k; for exponential sinusoids meeting the target body is narrowed in several
ways. Without loss of generality, only positive values are considered for k1 and ks. To avoid



singularities around periapsis, we require
1—kik2 >0 (9)

which ensures that the denominator in Eq. 3 is always positive (when zero or negative, the expo-
nential sinusoid cannot be followed using tangential thrust). For practical purposes, upper limits
of one and two are imposed on k5 and k1, respectively, since the required thrust levels become
untenably high when (1 -k k2) approaches zero. However, in the case of k1, the user may impose a
different upper limit, typically a higher onc, in order to allow greater excursions in radial distance
on legs where this may be warranted. The lower limit on k2 is taken as 0.01, as this permits up to 50
revolutions around the sun between periapsis and apoapsis — a number not likely to be exceeded
in practice. Lastly, a range of ks, values can be determined for which the resulting exponential
sinusoid will intersect the projection onto the low-thrust reference plane of the target body’s orbit.
For outbound targets, i.e., those whose minimum projected radius, pmiy, is greater than the current
radius, rp, we obtain, after some algebraic manipulations based on Eqgs. 1 and 8

2. .
K2 < tan®y — 2kys, In (Pn;n/’”B) (10)
[ln (pmin/rB)]

For inbound targets, i.e., those whose maximum projected radius, pmax, is greater than the current
radius, we similarly obtain
tan?+y + 2ky0, In (r
k2 < Y + 2k12, In ( Bz/pmax) an
(0 (r5/pmax)]

For all other targets, no additional constraints can be imposed on ky. In all cases, the limits on ko
are adjusted, if necessary, based on the limits for k1 and the constraint relationship Eq. 8.

Thus, for each turn angle we establish a range of ks values which yield intersections of the
exponential sinusoid and the projected orbit of the target. All that remains is to solve for the
specific value of kg, if any, which yields the correct time of flight to the intersection. This is
done by stepping through the range of ks values, and at each step computing the location of the
intersection point. No analytic solution being available, this is computed using a step-size and
search-direction controlled Newton method, with a suitable initial guess, as explained below. The
time of flight to the intersection is then computed by quadrature, allowing a miss angle to be found
— that is, the spacecraft-sun-target angle when the spacecraft reaches the intersection point (with
the target projected onto the plane). Thus, as explained below, we search for a zero miss angle in
the turn angle - k5 space. There is a one-dimensional continuum of such solutions, which we sample
at intervals according to the turn angle and k, step sizes. Of course, each exponential sinusoid will
usually intersect the target’s orbit more than once. We only keep track of up to two outbound
intersections, and up to two inbound intersections.

Thrust-Coast and Coast-Thrust Legs

For thrust-coast or coast-thrust legs, which might be termed “mixed” legs, the point at which
the thrust is turned off or on is called the switch point. The user specifies the heliocentric radial
distance of the switch point (the switch radius), and may optionally specify whether the spacecraft
15 to be heliocentrically in- or out-bound at the switch point (the switch direction). The default
switch direction is inbound for targets that are inbound from the switch radius, and outbound for
outbound targets. If the switch radius is between the target’s projected apoapsis and periapsis,
then both switch directions are considered by default. Multiple coast revolutions around the sun
may be optionally specified.

The search for encounters with the target body is accomplished in an analogous way to the
thrust-only legs, using a turn angle - ky search grid. For the thrusting arcs of mixed legs, the



constraint relation Eq. 8 is still valid, of course. In the case of thrust-coast legs, for cach turn angle
in the permitted range, the upper limit on ks is provided by Eq. 10 or Eq. 11, where the switch
radius takes the place of pr;, when the switch radius is greater than rpg, or takes the place of Proax
when the switch radius is less than rg. Interscction points and miss-angles arc computed as with
thrust legs, except that the exponential sinusoid is replaced by a conic in seeking the intersection
with the projection of the target’s orbit. In the case of coast-thrust legs, for each turn angle, the
spacecraft coasts to the switch point, where its state may be easily calculated, yielding a flight path
angle and speed which are used as in the thrust-only case for determining the upper limit on k.
Intersection points and miss-angles are then computed exactly as with the thrust-only case.

Finding Intersections with the Target Body’s Orbit

For each turn angle, the target body’s orbit, assumed conic with semi-latus rectum p, and
eccentricity e, is projected onto the low-thrust reference plane. The projected radius, p, after a
short derivation, is found to be

p|cos i
p= == , A— (12)
+V 1 —sin"icos?§ + ¢[|cosi|cosw cosf + sgn(cos i) sin wsin 6]

where i is the inclination with respect to the low-thrust reference plane, # is the polar angle in the
low-thrust reference plane, and w is the argument, of periapsis. The angles 6 and w are measured
from the positive z-axis, taken as the direction of the ascending node from the sun.

To find the intersection point(s), (r, 8), of the spacecraft trajectory with the target’s projected
orbit, Eq. 12 must be solved with the equation for the shape of the trajectory. The shape is either
the exponential sinusoid (Eq. 1) for thrusting arcs, or the conic for coasting arcs. In both cases, the
equations are transcendental in #, with no analytic solution readily available. Thus, the intersection
point must be found by a numerical root-finding technique. A step-size and step-direction controlled
Newton method is used to solve for the roots of the difference, d;, in the inverses of the radii:

1 1
d(f) = — —— =0 (13)
’ p(8)  r(0)
where r(f) is the shape of the trajectory arc. The inverse radius is used in order to simplify the
expression for the derivative required by the Newton method, thus speeding up computations,

convergence rates aside.

The root finding method is best described by means of an example. We consider the intersection
of an exponential sinusoid in the ecliptic plane, having periapsis at 0.8 AU, apoapsis at 3.1 AU,
and k; = 0.1, with the projected orbit of the asteroid Ceres (semi-major axis 2.77 AU, eccentricity
0.077, and inclination 10.6°). For the exponential sinusoid and the projected orbit, radius as a
function of # is shown in Fig. 1. The difference in inverse radius d; is shown as a function of #
in Fig. 2. Let us assumec that the spacecraft’s initial position is below Ceres’ orbit (i.e., Ceres is
outbound from the spacecraft). The sequential intersection points with Ceres’ projected orbit, are
labelled as B, C, D, G in the two figures. The goal is to find up to two outbound and two inbound
intersections, namely the points B, C, and G, respectively (there is only one inbound intersection).

The upper and lower bounds on the projected radius, py and py, are conservatively estimated as
the apoapsis and periapsis radii of Ceres, respectively, multiplied by |cosi|. For the first outbound
intersection (point B), the initial guess for the value of @ solving Eq. 13 is taken as 0,4, the easily
determined value of § where the exponential sinusoid radius is equal to pp,. We note that the root
1s guaranteed to be beyond 4. The Newton method will then quickly converge to g, without
any need for exercising step control. For the first inbound intersection (point G), the point F, with
polar angle O, is used as the initial guess. (If the exponential sinusoid’s apoapsis radius were below
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Figure 1 Intersections of an exponential sinusoid arc in the ecliptic with the projection of Ceres’
orbit.
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Figure 2 Root-finding for the intersections of an exponential sinusoid with the projection of a
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Figure 3 Miss-angle as a function of ks with turn-angle (TA) contours at 0.572° increments for
exponential sinusoid arcs originating at Mars and intersecting Ceres’ projected orbit.

Px, then the § of apoapsis would be used as the initial guess.) Clearly, the first step would take us
away from G, and so step control is invoked, setting the next initial guess just over % beyond 8p.
Decreases in # are only allowed after the first step, and then only if a root of d; is straddled. The
largest permitted decrease is just under %- Thus, convergence to the first outbound and the first
inbound intersections is relatively robust.

The second outbound intersection {point C) is computed with lesser certainty of convergence.
The initial guess is taken as the lesser of (U + 0.1rad) and (48 + ) /5. Except in rare circum-
stances, the former value will be normally be the lesser of the two. The same step controls as for the
first intersections are still imposed. With these step controls and initial guess, if the point C were
too closc to point B, it would be skipped, with the algorithm converging to the next intersection
(point D) if any. In a sense, this weeds out intersections that have similar characteristics due to
proximity. The second inbound intersection, which in the depicted case does not exist, would be
found by using (6 + 0.1rad) as the initial guess. The sampling of up to a total of four intersec-
tions, with their differing characteristics, is deemed to be sufficiently representative of the available

solutions.

While the above root-finding example is for an outbound target body, the root-finding for
inbound targets is entirely analogous. Also, the case where the spacecraft is on a conic arc, rather
than an exponential sinusoid arc, is treated similarly, although the problem is somewhat simpler, as
the angular period of the spacecraft is equal to the angular period of the target body (27), whereas
on an exponential sinusoid, the spacecraft’s angular period can be significantly greater than the
target’s.



Grid Search for Encounters with the Target Body

Once the intersection points between the trajectory and the target’s orbit have been computed
for a given turn angle (TA) and ks, the time of flight to these intersections is computed by quadra-
ture. Thus, when the spacecraft arrives at an intersection, the projected position of the target
body is known, making it possible to compute the angle subtended at the sun by the spacecraft
and the projected position. This miss-angle is taken as positive when the target leads the spacecraft,
negative when it lags. Clearly, an encounter occurs when the miss-angle is zero.

The process by which encounters are found may be depicted graphically, by plotting the miss-
angle versus kg, with contours for different turn angles. Of course, the miss-angles on any one plot
should come from the same type of intersection, say the first outbound intersection, or the first
inbound intersection. Fig. 3 shows such a plot for the first outbound intersection of a Mars-Ceres
leg of an Earth-Mars-Ceres trajectory with thrust-only legs. Only a representative sample of TA
contours is shown.

The miss-angles are computed for points on each TA contour in turn, starting at the lower end
of the available k5 range for the contour. Extrapolation for zero-miss-angle is done both across TA
contours and along TA contours. If two points on a contour straddle a zero-miss-angle (such as D
and E in Fig. 3), then a linear extrapolation is made over ks. The miss-angle for the extrapolated
value is then computed; it is retained if it falls within a certain tolerance of zero. When the next TA
contour is computed, extrapolations are made between it and the previous contour, if warranted.
For example, the point F is closest in ky value to point B on the previous TA contour, and the two
points straddle a zero-miss-angle, warranting cxtrapolation. First a linearly extrapolated value is
obtained for the turn angle, ignoring differences in k. The second lincar extrapolation is between
the k; values of points B and F, but for the extrapolated turn angle value. The actual miss-angle
for the extrapolated turn angle and ks is again checked against the tolerance. The remaining points
on the contours are similarly evaluated for root straddling.

To reduce the computational memory requirements, at any one time, information is only stored
for up to two TA contours. For example, the third TA contour will overwrite the first, as the first
is no longer nceded. We note that separate miss-angle calculations must be made for the separate
cases of different intersections, different switch directions, and different full coast revolutions.

Out-of-plane motion

Two cases must be distinguished. The spacecraft may encounter the target body whilst either
on a thrust arc or on a coast arc. In both cases, the target’s out-of-plane position at the time of
the in-plane encounter is matched by an additional thrust acceleration, Jh, acting along or against
the spacecraft’s angular momentum vector for some final portion of the leg’s thrust arc. This
out-of-plane thrust is assumed to have the form

Jw= (aop +bo rmin) 1% (14)

P

where agp and by are constants, and ry;, is the periapsis radius of the exponential sinusoid being
followed. The positive f,, direction is taken to be along the angular momentum vector.

Since both the in- and out-of-plane thrust will be much smaller than the gravitational attraction
of the central body, the in-plane components of the specific angular momentum, 4, and hy, behave
according to

dh  Th Sinﬂ (15)

~

df 9
dhy, 7 fy, cos 0
F 2 (16)



where the 2 direction is taken as lying along # = 0. We notc that to first order, the in-plane thrust
does not affect the in-plane angular momentum components. Now, h; and hy remain small, so
that the total angular momentum is approximately equal to just the out-of-plane component, 726,
computed as if f, were zero. Thus, at any point on an out-of-plane thrust arc, the out-of-plane

angle, ¢, and the speed normal to the plane, v,, can be approximated as

hg cos + hysinf
20
vz & [ho(sing — tanycos#) — hy(cos & + tanysin 6)] /r (18)

tang =~

For the thrust-to-encounter case, only the target’s out-of-plane position is matched, meaning
that only Eq. 17 need be satisfied, and not Eq. 18. Setting by = 0 and keeping only the unknown
constant agp in the expression fj is sufficient to do so uniquely. For the coast-to-encounter case,
both an out-of-plane speed and position must be matched at the end of the preceding thrust arc,
if the spacecraft is to match the target’s out-of-plane position at the end of its coast arc. Thus, in
this case, both agp and by are needed in the expression for fh, as two equations must be satisfied,
Eqs. 17 and 18.

Since the integrals, h, and hy, in Eqs. 17 and 18 must be computed numerically, they are
evaluated backwards from the in-plane intersection with the target, to permit, at each integration
step, the evaluation of the required f,. The “best” fj is the onc used. In the case of thrust-to-
encounter this means the f; with the lowest agp. For the coast-to-encounter case, this means the
fn with the lowest average value of |f,r?/u|, with the average computed over 6.

The effect of the out-of-plane motion on the time of flight is ignored. This approximate method
permits rapid computations, and is increasingly accurate for smaller out-of-plane excursions. While
this method is incorporated into STOUR-LTGA, we generally give little consideration to the out-
of-plane thrust and associated propellant, since, other than a simple selection process for the out-
of-plane thrust, this method was developed with regard neither for attaining the most satisfactory
thrust profile nor for the benefits to be had by using different B-plane angles.

Propellant Consumption

An estimate of the propellant consumption is made by assuming a constant specific impulse
(Isp) for the low-thrust engines. This simplification permits the required propellant mass to be
expressed as a fraction of the initial spacecraft mass. In addition, we compute separately the
propellant fractions required for the in-plane and out-of-plane thrust; from these is then computed
a single fraction. Since our approach controls directly only the shape of the trajectory, the required
thrust may fall outside the range of more accurate thruster models, such as those used by Sauer.10
This fact, together with the additional computational burden required by the more accurate thruster
models, prompt the constant I sp assumption. The more sophisticated models can be employed in
the optimisation of specific trajectories selected from the broad searches permitted by our method.

Automated Leg Selection and Recording of results

At any body, with a given incoming trajectory, there exists for the next leg a whole continuum
of trajectory solutions in the turn-angle - ko space. The computational approach samples this
continuum at intervals. From each of these sampled solutions, there again arises a continuum of
solutions to the next body. Thus, we limit the selection of solutions based on various criteria, to
avoid an exponential increase in the number of trajectories that reach the final body. Solutions
for a given leg are stored and propagated if, for example, they havc the lowest time of flight, the
lowest propellant mass fraction, the lowest thrust levels, the lowest arrival ve,, the highest arrival



Voo, and so on. Currently, the program uses eighteen criteria, which can be activated or deactivated
individually for each leg.

Any trajectories found by STOUR-LTGA are printed chronologically by launch date to a com-
puter file with a one- or two-line listing for each leg of the trajectory. The user may request that
partial trajectories be printed also. In this case, for launch date and launch v, values where the
final body in the path could not be reached, leg data is printed up to the last body reached.

STOUR-LTGA can also divide the legs into isochronous segments (the user can select how many
for each leg), and list the AV accumulated on each segment due to the thrust, if any. Such output
1s useful as input for trajectory optimisation software that uses direct methods.

RESULTS

The new STOUR-LTGA program, described in the previous section, can be applied?? to a variety
of mission design problems. As representative missions, we present here a rendezvous mission from
Earth (E) via Mars (M) to the asteroid Ceres {C), and a flyby mission from Earth to Jupiter (J)
after flybys of Venus (V), Earth and Mars. For ecase of reference, Table 1 lists the semimajor axis,
eccentricity, and inclination for the heliocentric orbit of cach body.

An optimised instance of the EMC mission type has been reported in the literature by Sauer.1
The EVEMJ mission type has not been found in the literature. Indeed, nor has any threc-gravity-
assist, low-thrust trajectory appeared from a perusal of the literature. Selected trajectories from
the broad searches conducted with STOUR-LTGA are used as initial guesses in optimisation. The
optimiser, intended for preliminary optimisation of trajectories, uses the direct method described
by Sims and Flanagan,'' who most generously made available their prototype program, which
was subsequently rewritten T. Troy McConaghy. The rewritten optimiser currently has the name
GALLOP (Gravity-Assist, Low-thrust, Local Optimisation Program).??

Table 1

ORBITAL ELEMENTS FOR SELECTED BODIES

Body a (AU) € i
Venus 0.72  0.007 34°
Earth 1.00 0.017 0.0°
Mars 1.52  0.093 1.8°
Jupiter 5.20  0.049 1.3°
Ceres 2.77 0.077 10.6°

Earth - Mars - Ceres

A broad secarch over the launch years 1990 to 2049, with launch vss between 0.75 km/s and
2.00 km/s, reveals that the year 2003, the month of April in particular, has one of the higher
concentrations of low arrival v, trajectories. Both legs are assumed to be thrust-only. Fig. 4
shows a scatter plot of the ecliptic arrival vy, against the launch date. The April launch date s
close to that of an EMC rendezvous trajectory optimised by Sauer.'® Thus, a more focused search
is performed over the months of April and May 2003, with launch v.,s between 1.0 kin/s and
1.7 km/s. The arrival ves that are below 0.1 km/s in Fig. 4 correspond to very high flight times.
Thus, from the refined search, a better all-round trajectory is picked, with pertinent data shown in
Table 2.

The selected trajectory from STOUR-LTGA was used as an initial guess in optimisation using
GALLOP. The optimisation sought, to maximise final spacecraft mass at the rendezvous with Ceres,

10
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Table 2

AN STOUR-LTGA EARTH-MARS-CERES TRAJECTORY, OPTIMISED IN
GALLOP, AND COMPARED WITH AN OPTIMISED CASE BY SAUER

STOUR-LTGA GALLOP Sauer™

Launch Date (dd/mm/2003) 06,05 06/05  08/05
Launch ve (km/s) 1.60 1.60 1.37
Ecliptic Arrival veo (km/s) 0.24 0.00 0.00
fmax, EM (mm/s?) 0.18
fave, EM (mm/s?) 0.13
fmax, MC (mm/s?) 0.12
fave, MC (mm/s?) 0.08
pmf 0.34¢ 0.23° 0.28?
TOF EM (days) 271 271 230
TOF MC (days) 862 862 845
TOF total (days) 1133 1133 1095

“Includes in-plane components only.
*Includes in- and out-of-plane components.

while keeping launch v, and launch, arrival and flyby dates fixed. The GALLOP data and available
data for the Sauer trajectory are also presented in the table. Both the GALLOP trajectory and
the Sauer trajectory assume a single NSTAR ion thruster. The reference solar array power (i.e.,
roughly the solar array power available at 1 AU) was 10 kW for GALLOP, and 5 kW for Sauer, who
also permitted 125 W to be used for spacecraft housekeeping. The higher power used in GALLOP
permits the ion engine to be used at full throttle (2.7 kW) until about 1.9 AU, whereas at 5 kW
this distance decreases to about 1.4 AU. Of note is that the [ sp drops-off at lower throttle levels.
Thus, the GALLOP trajectory reports a slightly lower propellant mass fraction than Sauer’s casc.
Sauer assumes an initial spacecraft mass of 568 kg, which is also used by GALLOP.

The STOUR-LTGA trajectory in Table 2 shows good correspondence to Sauer’s optimised
trajectory. The trajectory geometry, shown in Fig. 5, is also similar: For example, the exponential
sinusoid solution performs 0.56 revolutions about the sun on the EM leg and 0.67 revolutions on the
MC leg, as compared with about 0.53 and (.68 revolutions, respectively, for the optimised solution.
Furthermore, the STOUR-LTGA trajectory provides a good starting guess in optimisation. Using
GALLOP, we see rapid convergence to a solution that corresponds well to the Sauer solution which
was optimised by a different means (indirect methods). We expect STOUR-LTGA to provide
similarly close-to-optimal solutions not only on other launch dates for the EMC case, but also for
Mars gravity assist trajectories to other asteroids.

Earth - Venus - Earth - Mars - Jupiter

In the literature, the optimal trajectories we have found have at most two flybys on thrusting
legs between departure and destination planets. STOUR-LTGA, in addition to the strength of
broad searching over launch date and vy, offers the significant ability of searching over different,
long sequences of flyby bodies. One such path is EVEMJ (including launch and destination bodies).
(Currently, paths of up to 20 bodies are permitted, although this limit can be easily increased. Of
course, the longer the paths, the longer the computation times, and the longer the flight times,
making the longer paths better suited for short-period bodies.)

For the EVEMJ path, where a flyby of Jupiter is desired, the launch years 1975 to 2049 are
searched, for launch veos of 0.5 km/s to 2 km/s at 0.5 km/s increments. These launch vo,s are
well shy of even the Hohmann launch v., to Venus (2.5 km/s). Mars-Jupiter is assumed to be a
thrust-coast leg, with a switch radius of 3 AU. The other three legs are assumed to be thrust-only
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Table 3

AN STOUR-LTGA EVEMJ TRAJECTORY AND ITS
GALLOP-OPTIMISED VERSION

STOUR-LTGA  GALLOP

Launch Date (dd/mm/yyyy) 03/09/2029  03/09/2029
Launch v, (km/s) 2.00 2.00
V Flyby ve (km) 3.64 4.30
V Flyby Altitude (km) 6533 20365
V Flyby B-Plane Angle® -0.5° 62.7°
E Flyby veo (km) 6.50 5.90
E Flyby Altitude (km) 655 763
E Flyby B-Plane Angle® -166.0° -175.0°
M Flyby ve (km) 13.70 11.29
M Flyby Altitude (km) 200 200
M Flyby B-Plane Angle® 21.8° -5.4°
J Flyby veo (km/s) 5.85 6.25
fave, EV (mm/s®) 0.12

fave, VE (min/s®) 0.16

fave, EM (mm/s?) 0.10

fave, MJ (mm/s?) 0.14

Switch radius (AU) 3.0

pmf 0.341° 0.268°
TOF EV (days) 165 165
TOF VE (days) 334 314
TOF EM (days) 131 151
TOF MJ (days) 1335 1335
TOF Total (days) 1965 1965

“Fundamental plane taken as planet’s equatorial plane.
*Includes in-plane components only.
“Includes in- and out-of-plane components.

legs. To keep the search times short, a launch date step of 10 days is used. Since the last leg,
Mars-Jupiter, will be somewhat energetic, the upper limit on k; is set to 3. A maximum total time
of flight of 2500 days is allowed, with the maximum leg flight times set at 500 days for each leg
except the Mars-Jupiter leg, which is allowed up to 2000 days. The minimum flyby altitudes are
all 200 km. Finally, with an Isp of 2500 seconds assumed, conservative caps of 0.442, 0.25 mm/s?,
and 0.35 mm/s? are set on the in-plane propellant mass fraction, and the average and maximum
thrust accelerations, respectively.

The broad search yields two main groupings of trajectories, spaced about 49 years apart, as
seen in Fig. 6, where the in-plane propellant mass fraction is plotted against launch date. The
49-year spacing corresponds roughly with the 45-year repeat cycle noted in previous work24 for the
non-low-thrust E-VMVE-J path which utilises the same flyby bodies. Trajectories are found only
for launch veos of 1.5 km/s and 2 km /s, with the latter numbering about four times more than the
former. Higher launch ve,s and less restrictive constraints on the thrust levels would fill out the
trajectory families and produce new ones.

We select from the broad search the trajectory with the lowest in-plane propellant mass fraction,
which launches in 2029, as it also has attractive thrust and flight time characteristics when compared
to the other trajectories in the 2029-2036 trajectory grouping. The trajectory geometry is depicted
in Fig. 7, and pertinent data are listed in Table 3. The trajectory also serves as an initial guess in
optimisation using GALLOP, where the maximum final mass is sought for a launch mass of 300 kg,
a single NSTAR thruster is used, and a reference array power of 10kW is assumed. The launch Voo,
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launch date, flyby and arrival dates are all held fixed. The optimal trajectory found by GALLOP
1s also reported in Table 3.

Comparing the unoptimised and optimised trajectories in Table 3, three main differences are
seen. First, the B-plane angles are different, significantly so in the case of Venus, meaning that
the optimiser was able to alter these to effect the out-of-plane targeting more efficiently than using
thrust alone. Second, the flyby altitude at Venus is about three times larger in the optimised case.
Third, the flyby date of Earth in the optimised case is 20 days prior to that in the unoptimised
case. The last two differences are present largely as a way of reducing the exaggerated, lengthy,
and wastefully thrusting excursion beyond 1 AU, exhibited by the unoptimised trajectory prior to
the Earth flyby (see Fig. 7). One potential method of diminishing this excursion in STOUR-LTGA
would be to use a thrust-coast leg for the VE transfer. As for the considerably higher, optimised
Venus flyby altitude, it still causes the Incoming ve, vector to be turned by 47°, corresponding to a
heliocentric AV of 3.44 km/s. It is interesting to note that GALLOP did not converge as easily on
this EVEMJ trajectory as it did on the EMC trajectory (sece Table 2). Perhaps this is due to the
added complexity of not only imposing two more flyby constraints, but also utilising the flybys most
effectively . Lastly, both the optimised and unoptimised versions of this EVEMJ trajectory are
seen to be comparable to, if not superior to, non-low-thrust, gravity-assist Earth-Jupiter trajectories

reported previously.??

Other paths

When using STOUR-LTGA, the low-thrust, gravity-assist mission designer is faced with yet
another choice — which trajectory path to use. We have seen a simple path and one more-complex
path above. Other complex paths of similar character, such as EVMVEJ, can be easily identified.
One class of transfers deserving special mention is that of consecutive flybys of the same body for
Uso-leveraging purposes. Whether interior or exterior leveraging is sought, the transfers should be
set as coast-thrust in STOUR-LTGA, as can be explained by considering a tangential launch from
Earth. In both the interior and exterior cases, a thrust-coast leg will not permit a reencounter
of the Earth, for most reasonable values of the k1 and ks parameters. In the interior case, the
apoapsis of the trajectory’s osculating ellipse is reduced below 1 AU, while in the exterior case,
the periapsis is raised above 1 AU, making it impossible to return to the Earth on a coast arc.
Using a thrust-only leg to return to the Earth would be possible, but pointlessly wastcful, as the
arrival ve, at the Earth encounter would be the same as the launch Yoo (assuming a circular Earth
orbit), thanks to the symmetry of the exponential sinusoid. The coast-thrust leg does not have
these difficulties. By extension, any transfer back to the same body, whether at launch or later in
a path, should be set as a coast-thrust transfer.

CONCLUSIONS

From an infinity of solutions for any given low-thrust, gravity-assist trajectory type, how do
we choose even just one, let alone one that is “best” in some sense? This thesis has presented
a method for finding “sufficiently good” solutions from the infinity of solutions made possible by
the availability of continuous thrust. We see that the shape-based approach, in particular using
the exponential sinusoid shape, significantly simplifies the problem for low- to medium-energy
trajectories. Broad searches are made possible over what are perhaps the six main items of interest
to a mission designer: Launch date, launch v, propellant mass, thrust levels, time of flight and
arrival veo. An automated search capability for low-thrust, gravity-assist trajectories is added to the
STOUR program. STOUR-LTGA can thus compute trajectorics comprising legs that are thrust-
only, coast-only, thrust-coast or coast-thrust. The method not only provides broad overviews of
the trajectory design space, but also provides good starting points for trajectory optimisation.
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